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Abstract

Over the past several years, I have been conducting research on subword modeling in speech recognition. The re-

search is most specifically aimed at the difficult task of identifying and characterizing unknown words, although the

proposed framework also has utility in other recognition tasks such as phonological and prosodic modeling. The

approach exploits the linguistic substructure of words by describing graphemic, phonemic, phonological, syllabic, and

morphemic constraints through a set of context-free rules, and supporting the resulting parse trees with a corpus-

trained probability model. A derived finite state transducer representation forms a natural means for integrating the

trained model into a recognizer search. This paper describes several research projects I have been engaged in, together

with my students and associates, aimed at exploring ways in which recognition tasks can benefit from such formal

modeling of word substructure. These include phonological modeling, hierarchical duration modeling, sound-to-letter

and letter-to-sound mapping, and automatic acquisition of unknown words in a speech understanding system. Results

of several experiments in these areas are summarized here.

� 2003 Published by Elsevier B.V.
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1.1. Background

Speech is first and foremost a communicative

signal. It is a complex encoding of linguistic mes-

sages for the purpose of conveying information
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among humans who share the code. Speech sci-

entists have been studying various aspects of the
speech code for many decades, and engineers have

been involved in designing computer systems that

attain a certain degree of competence in under-

standing and rendering the code.

At the core of human communication is the

notion of ‘‘words’’ as the fundamental units.

Above the word level, it is apparent that words

group into phrases, and phrases group into higher
level units such as clauses and sentences. In addi-

tion to studies of how words are organized into

meaning, studies of the substructure of words in

multiple languages have revealed a number of

organizational principles (Scalise, 1986). The exact

specification of that substructure still eludes us,

mail to: seneff@sls.lcs.mit.edu
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however, particularly for languages such as Eng-

lish with a rich borrowing from other languages.

The inventory of phonemes for any particular

language can usually be enumerated quite specifi-
cally. We are now also reasonably confident that

the syllable exists as an intermediate layer between

words and phonemes, although most speech rec-

ognition systems make little or no use of this syl-

lable layer. There is also the possibility of breaking

words down into meaning units (i.e., morphemes),

which may not necessarily align precisely with

syllable units based strictly on phonology and
sonority. The difficulty of defining exactly how the

phonemes of a word might group themselves into

natural subunits has been a major hurdle to the

design of systems that utilize this intermediate

structure.
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1.2. Historical context

My interest in developing hierarchical struc-

tures to represent word substructure was inspired

by research conducted in the 1970s and 1980s by a

team of researchers and students at MIT, dating

back originally to Chomsky and Halle�s theory of
generative phonology (Chomsky and Halle, 1968).

A doctoral thesis by Kahn led to the formalization
of phonological phenomena with respect to sylla-

ble structure (Kahn, 1976). In the 1980s, a team of

researchers led by Allen developed a sophisticated

letter-to-sound generation system called MITalk,

based on a decomposition of words into meaning

units called morphs (Allen et al., 1987). At the

same time, Randolph developed formal rules to

parse words into syllables, with the aim of for-
mally encoding a distinctive-feature formalism

(Randolph, 1989). Zue was also codifying his

acoustic phonetic knowledge into formal, ordered,

context-sensitive rules that could be utilized to

expand lexical pronunciations for a speech recog-

nition task (Zue, 1983). Church�s doctoral thesis
(1983) proposed applying context-free rules 1 to
U 120

121
1 A context free rule is a rule that rewrites a symbol generally

into a sequence of zero or more symbols. A context-sensitive

rule attaches conditions under which the symbol is permitted to

be rewritten.
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parse syllables, in order to capture phonological

effects such as flapping and palatalization, arguing

that conditions for phonological phenomena could

be encoded effectively in category names, thus
avoiding explicit context dependencies.

1.3. Motivation

While researchers have made significant pro-

gress in speech recognition in the last two decades

(Bacchiani and Ostendorf, 1998; Cook et al., 1998;
Nguyen et al., 1995; Woodland and Young, 1993),

there are still many remaining problems which

could be addressed through the use of formal

representation of the substructure of words.

Nearly all speech recognition systems today are

based on a simple model in which words are rep-

resented explicitly in a lexicon encoding their

phonemic realizations, and class n-gram language
models provide linguistic constraint. One short-

coming of such a representation is that unknown

words are not formally represented, and therefore

will be recognized as an acoustically similar sub-

stitution of a known word, often adversely affect-

ing the recognition of neighboring words as well

(Hetherington, 1994; Hetherington and Zue,

1993). Another limitation is the lack of a syllable-
based framework for characterizing phonological

rules, as well as the difficulty to capture such rules

in an appropriate probability formulation. 2 The

durational aspects of phonemes depend on their

position within the syllable and the word, but this

information is usually not available to a recog-

nizer. Finally, the task of modeling an association

between letters and their pronunciations is likely to
benefit from knowledge of the linguistic context of

each letter.

1.4. Overview

Through my earlier and ongoing work in
parsing words into meaning, via the TINAINA natural

understanding system (Seneff, 1992), I have come

to believe that a similar approach can be used
2 Although one could argue that the use of triphone modeling

does provide some implicit information about phonetic context.
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effectively below the word level, yielding a parsi-

monious and trainable hierarchical representation

of word substructure (Seneff, 1998). It is my belief

that such representations may have significant
advantages over a flatter structure, in that they

should be capable of generalizing knowledge

across similar contexts. I have subsequently

investigated various ways in which such linguistic

substructure can be utilized in speech recognition

tasks. These investigations are predicated on a

common theme that involves parsing words into

their underlying linguistic constituents via a formal
grammar, expressed through context-free rewrite

rules. The resulting structural information is then

augmented with a probability framework, where

probabilities are determined by tabulating counts

in parse trees obtained by parsing a large corpus of

representative speech materials. A final optional

step is to reformulate the trained parse trees as a

finite state transducer (Hetherington, 2001), typi-
cally with inputs and outputs associated with the

terminals and preterminals of the parse tree,

respectively. This step then enables a straightfor-

ward mechanism for incorporating the linguistic

models directly into a recognizer search.

The ideas discussed above have been formalized

into a framework, called ANGIENGIE, and several dif-

ferent topics of research have been investigated by
members of the Spoken Language Systems group

within this framework. These include phonetic

recognition (Chung, 2001; Chung and Seneff, 1998;

Lau, 1998; Lau and Seneff, 1998), hierarchical

duration modeling (Chung, 1997; Chung and Se-

neff, 1997), sound-to-letter and letter-to-sound

generation systems (Meng, 1995; Meng et al.,

1996; Chung et al., in press; Seneff et al., 1996),
unknown word detection and modeling (Chung,

2001; Mou et al., 2001; Parmar, 1997), and pho-

nological modeling (Seneff and Wang, 2002). This

paper will provide motivation for the approach we

have taken, and will describe instances of all of the

above applications within a common thread.

While some of the investigations are on-going, it

seems appropriate at this time to provide a de-
tailed accounting of this research, partly in the

hope that others might be inspired to pursue sim-

ilar avenues of research.

215
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2. ANGIENGIESS subword linguistic representation

Most of the work in speech recognition to date

has been focused on the task of correctly produc-
ing the sequence of words that were spoken. The

notion of characterizing any information beyond

the word sequences is usually not treated as part of

the explicit goal, although some amount of pho-

nological and semantic knowledge is generally

viewed as a necessary adjunct to success. Usually,

each word is represented in the lexicon as a se-

quence of phonemes, and in some systems a pho-
nological rule framework permits the expansion of

lexical entries to explicitly account for phonologi-

cal effects like flapping or devoicing (Cohen, 1989;

Gauvain et al., 1993; Glass and Hazen, 1998;

Weintraub et al., 1989). Typically the rules are

precompiled into the lexicon, yielding an expanded

lexicon of alternate pronunciations.

In order to address the issue of out-of-vocabu-
lary (OOV) words, some recognition systems have

included a generic model for unknown words as

part of the recognizer�s phonetic model. The ap-
proach typically adopts a generalized probabilistic

subword model as a pronunciation model, such as

a phone bigram, for the ‘‘word’’ OOV (Bazzi and

Glass, xxxx). The word OOV then competes with

known words, and the goal is that it would score
better than known words for spoken out-of-

vocabulary words, preventing the system from

erroneously substituting a vocabulary entry with a

similar pronunciation. An interesting example of a

more sophisticated use of this technique is the

work by Onishi et al. (2001), which developed

distinct subword models for two different classes

of unknown words: city-name and surname. In an
evaluation experiment, they were able to achieve

perfect disambiguation of the unknown word class

whenever an unknown was detected, and with a

slight improvement in overall recognition perfor-

mance, when compared with a baseline that had

no unknown word model.

In the ANGIENGIE framework, we are interested in

building a single subword linguistic model that can
be effective for both the known and the unknown

words. Thus, the purpose for building hierarchical

structure below the word level is multifold. One

main goal is to predict phone sequences of the
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3 This follows roughly the definition given in (Allen et al.,

1987, p. 24), which is a representation of morphological units

such as prefix and root that is also tied to the word�s spelling.
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language without explicit ties to a particular

vocabulary. A bottom-up parsing procedure has

the important property that it supports significant

structure sharing among both in-vocabulary and
OOV words that begin with the same phone se-

quence. If words are further decomposed into

syllables, which then form the basic recognition

unit, even greater sharing is possible, since words

such as ‘‘retention’’ and ‘‘contention’’ can share

everything except their prefix in common syllable

nodes.

Exactly what linguistic knowledge should be
encoded in the ANGIENGIE parse trees is open for de-

bate. In all of the experiments we have conducted,

syllable structure plays a critical role. At this

point, we have developed several grammars with

distinctive symbol sets at the preterminal and ter-

minal layers of the parse tree, but we have con-

sistently distinguished stressed and unstressed

syllables, which are further decomposed into on-
set, nucleus, and coda, according to standard syl-

lable theory (Selkirk, 1982; Kahn, 1976). This

choice of decomposition reflects in part our belief

that the position of a consonant within its syllable

plays a critical role in its phonetic expression. For

example, a /t/ in a syllable onset /st/ cluster is

unaspirated, whereas a /t/ would normally be

aspirated in onset position. Greenberg (1999) has
shown, through studies on a large corpus of hand

transcribed Switchboard data (Godfrey et al.,

1992), that 28% of consonants in coda position

were deleted, a rate that is substantially higher

than the rate for onset position.

The substructure that is captured in ANGIENGIE �s
grammar rules includes morphology, stress, sylla-

ble structure, and phonological variants. Proba-
bilities are trained automatically from a parsed

corpus. We have used the approach of seeding on

phonetic transcriptions provided by automatic

alignment of training data using our segment-

based SUMMITSUMMIT speech recognizer (Glass et al.,

1996; Glass and Hazen, 1998), which expands

idealized phonemic baseforms into phonetic

alternatives via formal phonological rules.
The shared probability model is important for

generalizing phenomena over similar contexts.

Rare words can benefit from observations of

common words that have the same local phonetic
TED
PROOF

environment. And words that are completely un-

known to the recognizer can be generated with a

non-zero probability by following the parse tree

fragments of words with localized equivalent pat-
terns. For example, ‘‘queen’’ can be decomposed

into the onset of ‘‘quick’’ and the rhyme of ‘‘seen.’’

Parse trees in ANGIENGIE are further characterized

by structural units that encode positional roles of

the syllables in a word. Thus, unstressed syllables

are identified as ‘‘prefix’’ if they begin a word, and

as ‘‘suffix’’ if they are a terminal unit carrying

syntactic information, such as ‘‘-ing’’ for present
participle or ‘‘-ness’’ marking a nominalization.

This additional information is beneficial not only

for further constraints but also because the posi-

tion of a syllable within a word impacts other as-

pects, such as the prosodic characteristics. For

example, in prepausal lengthening a final un-

stressed syllable is affected much more strongly

than an initial one (Chung and Seneff, 1997).
In addition to the parse framework, a set of

explicit subword lexical units can offer further

constraint in phonetic recognition tasks. One

possibility is to augment a phonetic recognizer

with a lexicon containing the inventory of all the

unique syllables present in a corresponding word

lexicon for the task. A syllable n-gram will then

provide additional language model support to
improve the quality of the phone or phoneme

graph being proposed as outputs of the recognizer.

In addition to simple syllable units, we have also

investigated the use of more detailed units which

we call ‘‘morphs,’’ 3 essentially syllables marked

for both their spelling and positional information

within the word. Another unit above the syllable is

the metrical foot (Hayes, 1995), which consists of a
stressed syllable and zero or more adjacent un-

stressed syllables. This unit of recognition, which is

intermediate betweeen phonemes and words, pro-

vides a convenient compromise in yielding fairly

strong constraint while still supporting substantial

coverage of novel words and disfluencies in con-

versational speech.
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In ANGIENGIE, we currently represent our lexicon in

two tiers––words are entered as sequences of

morphs, and morphs are in turn entered as se-

quences of phonemes. We currently distinguish for
English five different possible morph positions:

prefix, stressed root, unstressed root, ‘‘dsuf’’ and

‘‘isuf’’. 4 Context-free rules encode positional

constraints for the morph units––for example,

unstressed root always follows immediately after

stressed root, and isuf�s are always terminal.
As mentioned previously, it is often not obvious

where to place syllable boundaries in English
words. There are many cases of ambisyllabicity, as

in the word ‘‘connect’’ where it is not clear whether

the intermediate consonant belongs with the pre-

ceding or following syllable. Placement of the

boundary can also be influenced by the underlying

morphology––when there is a clear inflectional

ending our policy has been not to shift the terminal

consonant of the root into onset position, even
though this would be in accord with a maximal-

onset rule. Hence ‘‘dancing’’ becomes ‘‘danc-ing’’

rather than ‘‘dan-cing’’. Often we introduce a

double consonant phonemically as a means of

implementing explicit ambisyllabicity, which re-

duces via a gemination rule to a single phonetic

realization. Hence, ‘‘connect’’ becomes ‘‘con-nect’’

with two /n/ phonemes at the phonemic layer
reducing to one at the phonetic layer. This makes

the boundary between the word-internal syllables

behave analogously to boundaries between word

sequences, as in ‘‘on next’’ or ‘‘seven nine.’’ Such

lexicalized geminations are nearly always associ-

ated with a spelling that includes a doubleton let-

ter, such as the ‘‘nn’’ in ‘‘connect.’’

380

381
382

383

384

385

386
NCO2.1. Example parse tree

One of the main goals of ANGIENGIE �s modeling is
to provide letter-to-sound and sound-to-letter

mappings, and, particularly for this purpose, we

have found it beneficial to provide a pair of
grammars with a shared superstructure but two
U

4 ‘‘dsuf’’ roughly corresponds to ‘‘derivational suffix,’’ and

‘‘isuf’’ to ‘‘inflectional suffix,’’ but we sometimes violate strict

conventions for pragmatic reasons.
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distinct sets of rules mapping preterminals to ter-

minals: one expecting phonetic units as the termi-

nals and the other expecting graphemics. The

preterminal layer contains the phonemic sequence
exactly matched to the entries in the morphs of the

two-tiered lexicon. The terminals are either the

letters of the spelling of the word or the phones of

the particular spoken realization. Thus letter-to-

sound and phonological rules are licensed on the

preterminal-to-terminal mappings. The upper lay-

ers capture syllabification, morphology, and stress.

Example parse trees in ANGIENGIE for the word
‘‘commission’’ are given in Figs. 1 (letter termi-

nals) and 2 (phone terminals). The lexical repre-

sentation of the word consists of a prefix (com)) a
stressed root (mis+) and an inflectional suffix

(¼ sion). Phonemically, there are both a final /m/
for the prefix and an onset /m!/ for the root. These

geminate in the phonetic realization into a single

[m]. 5 Similarly, the ‘‘mis+’’ unit ends phonemi-
cally with an /s/. The /s/ is palatalized to a [sh] at

the phonetic level, with the onset /sh!/ of the

‘‘¼ sion’’ marked as deleted. Fig. 3 illustrates how
sharing of subword units can be achieved, using

the examples ‘‘mis+’’ and ‘‘¼ sion.’’
2.2. Lexicon creation

ANGIENGIE relies heavily on the availability of a

specifically prepared two-tiered lexicon, in which

words are represented in terms of their underlying

morphs. We first obtained, through careful hand-

editing, a seed lexicon of some 10,000 words, de-

rived from the common words of the Brown cor-

pus (Kucera and Francis, 1967) augmented with

words from some of our conversational domains
such as ATIS (Zue et al., 1991) and Jupiter (Glass

and Hazen, 1998). We have since converted all the

common words of Pronlex 6 into ANGIENGIE �s lexical
format (Parmar, 1997). We have utilized a semi-

automatic process which first parses the letters of
5 [)m] is a code for ‘‘deleted in the context of preceding [m]’’.
6 A pronunciation lexicon for the words in the Comlex

lexicon, produced and distributed by the Proteus Project at

New York University, under the auspices of the Linguistic Data

Consortium (see http://www.ldc.upenn.edu).

http://www.ldc.upenn.edu
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Fig. 3. Selected entries from a word and morph lexicon for

ANGIENGIE.

Fig. 1. ANGIENGIE parse tree for the word ‘‘commission,’’ with

letters as the terminals. An aligned sequence of morphs is

shown below the parse tree. Note: ‘‘!’’ denotes onset position

and ‘‘+’’ marks stress. The second letter in a doubleton is spe-

cially tagged for additional constraint (m2, s2).

Fig. 2. ANGIENGIE parse tree for the word ‘‘commission,’’ with

phones as the terminals. An aligned sequence of morphs is

shown below the parse tree. The highlighted entries illustrate

units involved in the trigram language model as applied to the

bottom-up prediction of the preterminal layer.

Fig. 4. ANGIENGIE parse tree for the word ‘‘introduce,’’ showing

phonological rules expressed in preterminal-to-terminal map-

pings. The morph sequence is shown below the terminal

6 S. Seneff / Speech Communication xxx (2003) xxx–xxx

SPECOM 1320 No. of Pages 18, DTD = 4.3.1
1 December 2003 Disk used

ARTICLE IN PRESS
UNCO

each word into a set of hypothesized phonemic

alternatives, and then parses the phonetic units as

provided by Pronlex into phonemes, constrained

by the choices produced by the letter-parsing step.
Of course the automatic procedures are not error-

free, so extensive hand correction is required to

perfect the lexicon.

We hope to use the resulting morph lexicon as a

basis for a generic morph-based recognizer for

general English. A phonological model can then be
OF

trained on any large corpus of spoken utterances.

There would still be some possibility of unseen

morphs in new material, but these would likely be

covered generatively by the rule base. Such a lex-
icon is also useful for training a reversible letter-to-

sound system. Ultimately, we would like to aug-

ment it with additional information such as part-

of-speech, and perhaps add a feature propagation

mechanism to ANGIENGIE �s framework to utilize such
features, similar to the one developed for the TINAINA

natural language understanding system (Seneff,

1992).
TED
PR2.3. Probability model

In ANGIENGIE, a parse tree is obtained for each

word by expanding the rules of a carefully con-
structed context-free grammar. The grammar is

intentionally arranged such that every parse tree

lays out as a regular two-dimensional grid, as

shown in Fig. 4. Each layer is associated with a

particular aspect of subword structure: migrating

from morphemics to syllabics to phonemics to

phonetics at the deepest layer. Although the rules

are context free, context dependencies are captured
through a superimposed probability model. The

particular choice for the probability model was

motivated by the need for a balance between suf-

ficient context constraint and potential sparse data

problems from a finite observation space. We were

also motivated to configure the probability model

such that it would be causal, with strong locality,

for practical reasons having to do with the nearly
universal left-to-right search path in recognition

tasks, as well as the convenience of providing arc
phones.
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probabilities for a finite state transducer (FST)

representation (Hetherington, 2001).

Given these considerations, the probability

formulation we have developed for ANGIENGIE can be
written as follows:

P ðCijCi�1Þ ¼ Pðai;0jCi�1Þ
YN�1

j¼1
P ðai;jjai;j�1; ai�1;jÞ ð1Þ

where Ci is the ith column in the parse tree and
Ci ¼ fai;j; 06 j6Ng, and ai;j is the label at the jth
row of the ith column in the two-dimensional
parse grid. 7 In words, each phone is predicted

based on the entire preceding column, and the

column probability is built bottom-up based on a
trigram model, considering both the child and the

left sibling in the grid. These probabilities are ac-

quired by tabulating counts in a large corpus of

parsed sentences, mapping words to their corre-

sponding phonetic realizations. This process will

become clearer when we give an explicit example in

the next section.

ANGIENGIE �s language model, while restricted to
phone-to-phone transitions, is very powerful, and

captures generic linguistic knowledge of English

while a partial word is under construction. We

have determined empirically that, within the ATIS

flight information domain, ANGIENGIE is able to

achieve a significantly lower perplexity on unseen

data than a phone trigram similarly trained (Lau

and Seneff, 1997). Once a word is completed,
higher level language models can be incorporated

as well (e.g., syllable/word n-grams).
Fig. 5. Schematic of probability model in ANGIENGIE, and its

accounting of the context conditions for t-deletion in words

such as ‘‘introduce.’’ In (a) and (c) are the two column contexts

for the predictions of the phones ‘‘)n,’’ symbolizing deletion
after /n/, and ‘‘rx,’’ a retroflexed schwa. (b) Illustrates the bot-
UNCOR2.4. Phonological rule expression

ANGIENGIE �s ability to encode and generalize pho-
nological rules is best illustrated through an

example. Consider the parse tree shown in Fig. 4

for the word ‘‘introduce’’ pronounced casually as
‘‘innerduce.’’ The two special phones [)n] and
[)rx] are ‘‘deletion’’ phones, meaning that they
occupy no temporal space and have no acoustic

model. The deletion category is tied to the pre-

ceding phone�s identity. The grammar developer
7 j indexing begins at the bottom of the column.
TED
PROOF

would specify that /t!/ can be realized as ‘‘[)n]’’,
meaning ‘‘/t/ in onset position can be deleted after

[n].’’ The probability model captures the important

context conditions––falling stress and following
schwa. The deletion of the /ow/ is predicated on

the realization of the preceding /r/ as a retroflexed

schwa ([rx]).

Fig. 5 illustrates the context conditions that are

learned, with regard to this t-deletion rule. The

column above the [n] encodes coda position in a

stressed syllable. It predicts a deletion after [n]

with no awareness of which phoneme actually
follows. The trigram column-building step decides

which phoneme was deleted. Other possibilities

would be /t/, /d/, /d!/, and /n!/. The training pro-

cedure would collapse together the /t/ deletion here

with other similar environments, such as ‘‘in-

tegrate,’’ ‘‘cantaloupe,’’ ‘‘entertain,’’ ‘‘Santa

Clause,’’ ‘‘hunter,’’ and ‘‘pantyhose.’’ The column

above the [)n] would learn through training that it
is rarely followed by anything other than [ax], [rx],

and [ix]. The system would thus learn from

examples that the right context must be a schwa,

but it could be front, back or retroflexed. This

‘‘fact’’ was not informed by any rule, but rather

discovered from observation of training data.
2.5. Spellnemes

In the original grammars we developed for

ANGIENGIE, we adopted the point of view that there

would be two parallel grammars with identical
tom-up trigram prediction of the deleted phone�s parent pho-
neme, which in the example is ‘‘t!,’’ a /t/ in onset position (see

text for discussion).
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Fig. 6. ANGIENGIE parse tree for the word ‘‘commission,’’ with

spellnemes as the preterminals (highlighted), and phones as the

terminal units. This is to be compared with the corresponding

parse tree in Fig. 2.
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parse tree superstructure, but terminating in pho-

netic units on the one hand and in graphemic units

(spellings) on the other hand. The phonetic ter-

minals would characterize possible phonological
rules, such as alveolar flapping, vowel reduction,

anticipatory palatalization, etc. (Zue, 1983). The

graphemic units would encode letter-to-sound

rules of English, with the terminals consisting of

the letters of the English alphabet, sometimes

grouped to form natural paired units such as ‘‘th’’

or ‘‘ng.’’

In more recent work, however, (Chung,
2000a,b; Chung, 2001) we have begun to explore

potential benefits of introducing a new unit type

which we refer to as a letter-phoneme, or ‘‘spell-

neme.’’ These are units which tie together letters or

letter sequences with their corresponding pronun-

ciation in a single symbol string. For example, the

spellneme unit, ‘‘a_x+’’ symbolizes a short /a/,

pronounced as in the word ‘‘cat,’’ whereas the
‘‘a_l+’’ symbol string refers to a long /a/ as in

‘‘cape.’’ Other symbols distinguish ‘‘soft’’ and

‘‘hard,’’ for consonants such as �c� (compare
‘‘cent’’ with ‘‘car’’), etc. In general, we expect a

sequence of spellnemes to encode both the spelling

and the pronunciation of the word.

An advantage of these spellneme units is that

they provide greater constraint, in that they are
more specific than either letters or phonemes. We

expect this to translate into better performance,

not only on the sound-to-letter task, but also on

other tasks such as phonetic recognition, due to

the richer language model, which has in fact been

borne out by experiments (Chung and Seneff,

1998). There is also the notational convenience

that both the spelling and pronunciation can be
derived through simple string manipulations. The

‘‘commission’’ example, with spellnemes as pret-

erminals and phones as terminals, is illustrated in

Fig. 6.

574
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576

577

578

579
580

581
UN3. Incorporating ANGIENGIE into recognition tasks

The ANGIENGIE parsing framework provides pow-

erful mechanisms for learning important aspects of

subword structure. However, parsing is in general
a computationally expensive process, and so it
TED
PRObecomes important to consider ways of encapsu-

lating the results of ANGIENGIE parse training into a

speech recognition task while still preserving close
to real-time performance. Fortunately, the SUM-SUM-

MITMIT segment-based recognizer has been formu-

lated in terms of a FST framework (Hetherington,

2001), which provides the opportunity to encode

complex linguistic knowledge and embed it in the

core recognizer search engine. The dominant ap-

proach we have taken is to reconfigure ANGIENGIE

parse trees as a ‘‘column bigram’’ (Chung, 2000b),
where a ‘‘column’’ is a unique path from a termi-

nal node up to the root node. An assignment of the

probability associated with a transition from one

column to the next can be computed directly from

the ANGIENGIE parse framework. In most of our

experiments, we have preserved only a portion of

the information in the ANGIENGIE parse tree via the

input and output symbols associated with the FST.
These simplifications were thought to be necessary

both because of the complexity inherent in an FST

representing the full ANGIENGIE parse space, and be-

cause the full parse space would likely lead to an

impractical FST size (but see (Mou et al., 2001) for

a more general FST solution).

For many applications, the full linguistic model

obtained from ANGIENGIE is correlated with other
linguistic knowledge encoded in higher level lan-

guage models introduced either in the same stage

or in later stages of a multi-stage recognizer. An

intended goal is to influence the search through

language model constraints before the lexical en-

tries have been retrieved. Once a proposed word is

known, and at the point where the word n-gram
score is being introduced, the linguistic component
of the ANGIENGIE contribution to the word can be

subtracted out, leaving behind only the phono-
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8 For the details of these experiments, please see Chung

(1997).
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logical component. In other configurations, a more

precise formulation using Bayes� formula to re-
move from each column–column score all contri-

butions except the phoneme-to-phone probability
assignment, where the intent is to use ANGIENGIE

strictly as a phonological rule model. The latter

technique is particularly effective when the speech

corpus used for phonology training is not well

matched to the application domain, as is often the

case when a new domain is being launched. In such

cases, the upper layers of ANGIENGIE �s parse tree
would obtain probability training from an inap-
propriate linguistic model, which can be elimi-

nated by the normalization procedure. The

likelihoods of the phoneme-to-phone mappings

should be independent of the domain, and thus

can be used to capture phonological rule proba-

bilities generically (Seneff and Wang, 2002).

In the remainder of this section we will touch on

several applications where the ANGIENGIE linguistic
hierarchy has been found to be useful for

improving speech recognition performance. We

begin with the task of duration modeling in rec-

ognition, evaluated in the ATIS flight information

domain (Chung and Seneff, 1997). This is followed

by an experiment in acquiring probabilities on

phonological rule productions, conducted in the

Mercury flight reservation domain (Seneff and
Polifroni, 2000), but making use of a large training

corpus from the Jupiter weather domain (Seneff

and Wang, 2002). Next, we address the issue of

detecting and accounting for unknown words,

through experiments conducted in the Jupiter do-

main (Chung, 2000a,b). We conclude with a dis-

cussion of our research in the highly related topic

of automatic new-word acquisition (Chung and
Seneff, 2002). Due to space restrictions, each of the

topics is described only briefly. The interested

reader is referred to the literature for details of the

experiments.

3.1. Duration modeling

ANGIENGIE �s parse trees can provide access to

intermediate structures within words, which can be

useful for characterizing prosodic information.

Thus far we have only attempted to characterize
prosody through timing measures. However, we
TED
PROOF

have found that significant improvements in both

phonetic recognition and word spotting can be

gained through the use of relative duration models

relating parents to children at all layers of an
ANGIENGIE parse tree (Chung, 1997; Chung and Se-

neff, 1997). The approach adopted involved nor-

malizing the duration of each constituent in the

parse tree with respect to its particular children,

and then measuring the portion it occupies of its

parent’s total duration. The procedure propagates
to the top of the tree to yield a word-by-word

speaking rate parameter, which can then be folded
back into the phonemic layer to tighten the dis-

tributions on absolute phoneme duration. This too

leads to improved overall recognition.

To quantitatively assess the effectiveness of the

hierarchical duration model, an experiment was

conducted on phonetic recognition in the ATISATIS

flight information domain, where the sophisticated

duration models were benchmarked against a
phonetic recognizer configuration which made use

of the raw phone duration as a feature in the

phone-based acoustic models. The enhanced sys-

tem augmented the standard system with two sets

of Gaussian models, as suggested above: relative

duration models, across the entire parse tree, and

models for absolute phoneme duration, normal-

ized with respect to the estimated word-by-word
speaking rate parameter. It was found that the

performance gains attributable to the hierarchical

duration models were stronger when the linguistic

models included a richer knowledge base, with the

best gains yielding improvements in phonetic error

rate from 29.7% to 27.4%. 8

The word spotting experiments (Lau, 1998)

were also conducted in the ATISATIS domain, where
the task was to detect all city names in the user

utterances, treated as keywords. Results were re-

ported in terms of a ‘‘figure of merit’’ (FOM),

derived by integrating over a receiver operator

characteristic (ROC) curve, which gives detection

rate as a function of false alarm rate. The addition

of the hierarchical duration model to the scores for

the keywords yields performance gains on the
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FOM from 89.3% to 91.6%. Details of this

experiment can be found in (Chung, 1997; Lau,

1998).

We believe that this direction of research has
many as yet unexplored branches, both in terms of

incorporating hierarchies above the word level and

in incorporating other prosodic measures such as

fundamental frequency and energy.

3.2. Acquiring phonological rule probabilities

This section describes a set of experiments we

have conducted, aimed at acquiring a probability

model to support phonological rules describing the

mappings from the phonemic baseforms of a lex-
icon to the actual phonetic realizations in sponta-

neous speech. In this case, we are only interested in

the component of ANGIENGIE �s probability model that
predicts the terminal phone unit of each sub-

sequent column. It is not enough to simply discard

the predictions of the chain of parents moving up

the right hand column, but rather they must be

considered as contributing to the conditioning
context for the terminal phone.

The procedures we have adopted appear com-

plex, but are relatively straightforward to execute,

given a SUMMITSUMMIT recognizer with an associated

phonological rule set, an ANGIENGIE grammar with

ANGIENGIE �s phonemes in the preterminal layer and
SUMMITSUMMIT �s phones in the terminal layer, a lexicon
of words in the domain, with baseforms available
in both SUMMITSUMMIT �s phonemic units and in ANGIENGIE �s
phonemic units, and a large corpus of utterances

for training.

The approach we have taken, then, is to start

with a SUMMITSUMMIT recognizer, complete with its

standard set of phonological rules, which, when

applied to the SUMMITSUMMIT baseforms, yields a finite

state transducer specifying all the phonetic vari-
ants possible for each word in the lexicon, but in

the process, losing the mapping from phones to

phonemes (Hetherington, 2001) (this transducer

inputs phones and outputs words). We then insert

a column bigram FST mapping phones to ANGIENGIE

phonemes, along with an ANGIENGIE baseforms FST

to map from ANGIENGIE phonemes to words. The

column bigram FST will contain probabilities
computed by training ANGIENGIE on an observation
TED
PROOF

space obtained by parsing the phonetically aligned

corpus. The process can be iterated.

The ANGIENGIE model intentionally captures both

phonological and linguistic aspects of the lan-
guage, such as the frequency of different syllable

onset patterns. However, for the purpose of

modeling the likelihood of the phonological vari-

ants, the linguistic contribution to the probability

model needs to be removed. Specifically, our

phonological model is designed to predict each

subsequent phone, using the entire previous col-

umn and the column above the new phone as the
context. This can be achieved by essentially

inverting the probability model of the right col-

umn such that the predictor focuses totally on the

prediction of ai;0, the phonetic realization associ-

ated with the right column. In practice, this means

summing over all observed instances of ai;0 fol-
lowing Ci�1 to compute a total probability for each

particular set of fai;j; j > 0g, i.e., each unique up-
per column. This sum then becomes the denomi-

nator in a normalization step. Thus, the

probability of the right column�s phone is mod-
elled as the probability of the phone and the upper

column, normalized by the total probability of the

upper column, given the left column:

P ðai;0jCi�1; fai;j; j > 0gÞ

¼ P ðai;0; fai;j; j > 0gjCi�1Þ
P ðfai;j; j > 0gjCi�1Þ

¼ PðCijCi�1ÞP
ai;0

P ðai;0; fai;j; j > 0gjCi�1Þ

¼ P ðCijCi�1ÞP
ai;0

P ðCijCi�1Þ
ð2Þ

P ðai;0jCi�1; fai;j; j > 0gÞ

¼
P ðai;0jCi�1Þ

QN�1
j¼1 P ðai;jjai;j�1; ai�1;jÞ

P
ai;0

P ðai;0jCi�1Þ
QN�1

j¼1 P ðai;jjai;j�1; ai�1;jÞ
ð3Þ

To acquire the probability model for the col-

umn bigram, the corpus is first processed through

forced alignment using standard methods avail-

able in SUMMITSUMMIT, to yield a phonetic transcription

associated with each utterance. The ANGIENGIE

grammar is then trained on parse trees associated
with the corpus. Next, the corpus is reparsed, but
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this time using the trained grammar, and with the

intent of producing a column bigram mapping

phones to ANGIENGIE phonemes, removing the lin-

guistic predictions through the procedures de-
scribed above. An attractive aspect of this

approach is that the corpus for training does not

have to be restricted to the intended application

domain, since the language model component of

the column bigram probability space has been

completely removed. A summary of the steps in

this procedure is given in Fig. 7.

To demonstrate the viability of this approach,
we have trained the system on a corpus consisting

of a mixed set of 80,700 utterances 9 from the

Jupiter weather domain and 13,800 utterances

from the Mercury flight reservation domain. The

trained model was then tested on an independent

test set of 848 utterances exclusively from the

Mercury domain. Results are summarized in Table

1. We were able to realize a significant reduction in
word error rate, compared with the SUMMITSUMMIT

baseline system, when training on a trigram lan-

guage model. Perhaps more significantly, when we

evaluated on understanding error rates, the per-

formance improvement was even greater: concept

error rate dropped from 11.9% in the baseline

system to 10.4% with the phonological probability

modeling, suggesting that the probabilities are
differentially helping the content words. For fur-

ther details concerning these experiments, please

see Seneff and Wang (2002).
827
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833
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835

836

837

838

839
840
UNCORR3.3. Modeling unknown words

One of the most significant applications for

ANGIENGIE in subword modeling is both the detection

and the characterization of new words. Our ap-

proach to this problem is predicated on the notion

that the known words can serve as a model for the

unknown words: by decomposing words into their
linguistic constituents, novel combinations of these

constituents can yield representations for the un-

known words. To fully characterize new words,

one needs both their phonemic and their graphe-

mic representations. Thus, if a subword hierarchy

841

842

8439 Since we have available a much larger corpus from Jupiter.
TED
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can capture both of these aspects, then it has utility

to provide both constraint and valuable linguistic

knowledge.

In our early work on sound-to-letter and letter-
to-sound tasks (Seneff et al., 1996) we formulated a

grammar whose terminals were the letters of the

spelled form, with the preterminals encoding

phonemic information. We conducted experiments

using the Brown corpus and obtained competitive

results on the letter-to-sound task (91.5% phoneme

accuracy on an unseen test set). For the sound-to-

letter task, we modified the search such that the
preterminal phonemes were provided as inputs and

the parsing process then predicted the most likely

letter sequence corresponding to these phonemic

specifications. This strategy gave a reasonable

performance (89.2% letter accuracy on an inde-

pendent test set) but it assumed a perfect phonemic

transcription as the input sequence, and it still falls

far short of the performance level necessary for
new word enrollment.

In later experiments conducted by Chung

(2000a), we attempted the much more ambitious

waveform-to-letters task. These experiments were

conducted within the Jupiter weather domain

(Glass and Hazen, 1998), and we selected as a test

set a set of utterances that contained unknown city

names. The task therefore involved first identifying
the presence of the portion of the speech waveform

associated with the unknown city, subsequently

proposing a possible spelling for that city.

We attacked this problem through a two-stage

procedure, where the first stage utilized subword

structure mainly as a language model in support of

phonetic recognition, and the second stage in-

volved parsing the resulting phone graph into a
sequence of proposed known and unknown words.

For both stages, we utilized a grammar that con-

tained SUMMITSUMMIT phonetic units as the terminals

and spellnemes as the preterminals. Thus we

mapped phones directly to units that encode both

the phonemic and the graphemic information. This

approach is distinguishable from the approaches

addressed by Bazzi and Glass (xxxx) and Onishi
et al. (2001) in that a detailed sound-to-letter sys-

tem is embedded in the linguistic model charac-

terizing the unknown words. We anticipate that

linguistic constraint achieved as a side-effect of the
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Table 1

Speech recognition (WER) and understanding (CER) perfor-

mance for telephone quality speech collected within the Mer-

cury flight reservation domain

No. of

Utterances

WER (%) CER (%)

Baseline + Angie

PM

Baseline + Angie

PM

848 17.3 16.3 11.9 10.4

The system which utilized an ANGIENGIE pronunciation model (+

Angie PM) is contrasted with a baseline system that utilized the

same set of phonological rules but had no probability model for

the alternate pronunciations.

Fig. 7. Steps in training phonological rule probabilities using ANGIENGIE and SUMMITSUMMIT.

Table 2

Recognition performance in terms of word error rate (WER)

and concept error rate (CER) in the Jupiter weather domain,

for utterances containing out-of-vocabulary city names

WER (%) CER (%)

Baseline 24.6 67.0

Two-stage ANGIENGIE 15.6 31.3

Three-stage ANGIENGIE/

TINAINA

17.4 21.8

The percentages indicate error rates for all the words. Unknown

words were counted as correct if they were identified as such.

The baseline system had no capability to handle unknown

words.
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statistical sound-to-letter mappings will provide a

richer linguistic model for the unknown words,

with the additional benefit (and goal) of providing

a full characterization of the unknown words in

terms of both their spellings and pronunciations.

Since all of the linguistic information in the first

stage was ultimately discarded, we were not re-

quired to represent this information perfectly. In
fact, for certain words, we felt that the training

process would generalize better if we discarded

rare forms, allowing their more common homo-

morphs to stand in for them. A good example to

clarify this point is the word ‘‘champagne,’’ whose

unique spelling is very difficult to predict from

observations of other words in English. An Eng-

lish sound-to-letter system not explicitly trained on
this word would likely produce something like

‘‘shampain.’’ We decided to formalize such ‘‘mis-

takes’’ by introducing these odd spellings inten-

tionally in order to reduce the perplexity of the

task and better generalize the models. We realized

further that even the boundaries of the words were
TED
PROnot necessary to preserve in the first stage of our

system. We therefore decided to license a realign-

ment of word boundaries by reorganizing the syl-
lables into foot-like units, each of which contained

a single stressed syllable and zero or more un-

stressed syllables on either side. Furthermore, we

developed an iterative procedure which realigned

these foot-like units with each iteration. Each

realignment would support the same phonetic se-

quence as the original but with a reduced per-

plexity. The result of all of this training was a
significant net reduction in the size of the FST,

along with a reduction in the perplexity of the task,

both of which are positive outcomes. The foot-like

pseudo-words were supported by a standard class

trigram, to yield additional constraint in the

search.

The second stage of this system parsed the

phone graph into ANGIENGIE parse trees, this time
using a grammar that had been trained on the

Jupiter word lexicon, and allowing unknown

words to compete with known words in the search.

Table 2 reports some recognition and under-
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Fig. 8. Some examples of unknown cities and their proposed

spellings, produced by the ANGIENGIE two-stage recognizer. Spell-

ings were extracted from the letter-phonemes at the preterminal

layer of the ANGIENGIE parse tree.
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standing error rates for three different systems,

where words are considered as correct if they are

unknown to the recognizer and correctly identified

as unknown cities. Every utterance in this selected
test set contained an unknown city, although the

systems were unaware that this was the case. All

systems used the same set of context-dependent

acoustic models. The baseline system was a stan-

dard SUMMITSUMMIT recognizer configuration utilizing a

word trigram language model, but with no capa-

bility to deal with unknown words. The two-stage

system utilized the foot-based ANGIENGIE grammar
reconfigured as an FST in the first stage, sup-

ported by a foot-trigram language model. The

output of this stage was a phone graph that was

subsequently searched in a second stage, parsing

with an ANGIENGIE grammar that mapped to the rec-

ognizer vocabulary, supporting novel unknown

generations as unknown words. An optional third

stage parsed the word graph proposed by the
second stage using our TINA natural language

system (Seneff, 1992), which sometimes favored a

solution that was suboptimal in the second stage

scores. The two-stage system yielded a 36.6%

reduction in word error rate (WER), and a 53.3%

reduction in concept error rate (CER), compared

to the baseline system. The reason that CER is not

100% for the baseline is that other concepts, such
as dates, state names, and topic of inquiry (e.g.,

‘‘will it rain?’’) are also counted. With the addition

of NL support, the concept error rate improved

further to 22%, a net reduction of 67.5%, although

this was accompanied by an increase in recogni-

tion error.

3.4. Automatic acquisition of new words

In addition to proposing unknown words, the

system described above is also capable of propos-
ing spellings for these words. Some examples of

proposed spellings are given in Fig. 8. A recogni-

tion evaluation of the proposed spellings in terms

of letter substitutions, insertions, and deletions,

was computed for the unknown words that were

correctly tagged as such. The result was a 57.8%

letter error rate, which, while quite high, is still

substantially better than chance performance. The
significant result is that we have formulated a
TED
PRprocedure for modeling unknown words by a

technique of generalizing from the known words,

and have been able to locate the unknown words

in a user utterance and propose a set of alternate

spellings and pronunciations for these words.
A further experiment aimed at improving the

sound-to-letter performance, conducted by

Gabovich (2002), utilized the PhoneBook (Dupont

et al., 1990) isolated word corpus as the acoustic

data. PhoneBook is a set of approximately 92,000

isolated word utterances spoken over the tele-

phone by a large number of native speakers of

American English. It utilizes a vocabulary of
about 8000 words, and the data have been as-

signed to speaker-disjoint and vocabulary-disjoint

training and test sets.

Our interest was in understanding how reliably

we can spell the unseen words from PhoneBook if

we choose to represent them only by the column

bigram FST obtained by training an ANGIENGIE

grammar on the corpus. We compared perfor-
mance on the training set with that on the test set,

to measure how well the models are able to gen-

eralize to unseen data. We are aware that sparse

data problems will cause a certain percentage of

the words to fail, even if given a perfect phonetic

transcription, which would force these words to

choose a suboptimal solution. But a more serious

source of error is the difficult recognition task of
producing a phonetic transcription from a wave-

form without explicit knowledge of a lexicon.

We began with a lexicon of words in Phone-

Book represented in terms of morph sequences

whose pronunciations were in turn represented as
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Table 3

Recognition performance (letter error rate) on the training and

test sets for the task of automatically proposing a spelling of an

unknown spoken word, for the PhoneBook telephone-quality

isolated word corpus

Sub (%) Del (%) Ins (%) LER (%)

Training Corpus 16.6 7.5 10.0 34.1

Test Corpus 21.2 9.3 10.5 41.0

See text for details.
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phonemic units. 10 We developed a procedure to

convert the phonemic baseforms into spellnemic

baseforms by utilizing a letter-to-phoneme ANGIENGIE

grammar and then inferring the correct spellneme
by associating the terminal letter sequence with the

corresponding preterminal phoneme. We could

then derive an ANGIENGIE grammar mapping pho-

nemes to spellnemes semi-automatically. Further-

more, we took advantage of the research on

phone-to-phoneme modeling to create a statistical

representation of the phonological rules account-

ing for the variations in pronunciation of the
individual words. We trained the phone-to-pho-

neme grammar on aligned phonetic transcriptions

for the training corpus, and derived a corre-

sponding column bigram FST. In parallel, the

phoneme-to-spellneme grammar was trained on

phonemic representations automatically obtained

by parsing the letters of the training corpus using a

letter-to-phoneme grammar, verified at the morph
level against the lexicon. The language model was

then just a composition of the two resulting col-

umn bigram FSTs. Weights were optimized on an

independent development set.

This system was tested on PhoneBook data, with

the main goal of observing how well training would

generalize to words that the system had never ob-

served in training. The task is more difficult than
phonetic recognition, in that a sound-to-letter

system is embedded in the overall task. For exam-

ple, a recognition of ‘‘fragmental’’ as ‘‘fragmittle’’

has only a single phonetic error (missing /n/), but

gets a 50% letter error rate.

Results are summarized in Table 3. Overall

letter error rate (LER) increased from 34.1% to

41.0% when comparing the training set with the
test set, which we feel reflects fairly good general-

ization capabilities. We were also interested in

assessing how well the system would perform on

the test set if the phonetic transcription were per-

fect. Notice that this is different from and more

difficult than the phoneme-to-letter task discussed

in Section 3.3, since it is mapping from phones to

letters. This experiment will measure the capabili-
U

10 This lexicon had been prepared by Livescu as part of her

research on duration modeling.
PROO

ties of the sound-to-letter system independent of

the phonetic recognition subtask. We obtained a

LER of 12.7% using as inputs the forced phonetic

alignments, for the subset (70.4%) of the test set

that had any solution at all through the FST space.
Nearly 30% failed to parse, clearly indicating that

we need to add a back-off mechanism to support

them. However, overall performance on the set

that parsed versus the set that failed drops by less

than 6%.
1045
TE3.4.1. Integrating pronunciation and spelling infor-

mation

In the context of an interactive dialogue system,

there are further options available to help with the

task of unknown word acquisition. Having de-

tected that there may be an unknown city, the

system can solicit from the user a spoken spelling

form for the word. An ANGIENGIE grammar with let-

ters as terminals can be used to parse a letter graph

produced by the SUMMITSUMMIT recognizer. This inde-
pendent source can be matched against the pro-

posed solutions from the word pronunciation in

order to select something that is consistent with

both sources. A final resource that is available with

telephone input is a keypad entry of the unknown

word. This provides the interesting constraint that

each key disambiguates into one of three possible

letters. This can be formulated as a strict language
model and provide further constraint to the

problem.

We have been pursuing the above ideas in a

joint research project with Chung. 11 For the

experiments described below, we have created an
11 Now at CNRI in Washington, DC.
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Table 4

Performance results for an experiment integrating telephone

keypad inputs with spoken names, to produce hypothesized

spellings for the names

Test set IV subset (84%) OOV subset (16%)

LER (%) WER (%) LER (%) WER (%)

Mercury 1.7 8.1 12.0 43.2

OGI 1.8 8.1 13.3 57.3

Letter error rates (LER) and word error rates (WER) are re-

ported for the in-vocabulary (IV) and out-of-vocabulary (OOV)

portions of the Mercury and OGI test sets. Both sets have about

a 16% OOV rate.
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ANGIENGIE lexicon of about 100,000 personal names,

originally obtained from the Web, and have

trained ANGIENGIE parse trees on this corpus to pro-

duce a model mapping phonemes to letters.
In an initial experiment (Chung and Seneff,

2002), we developed a recognition system that is

able to integrate information from a keypad input

of the spelling of the word with information culled

from a spoken pronunciation of the word, as

schematized in Fig. 9. We defined the search space

by composing an FST mapping phonetics to

graphemics with an FST specifying all possible
pronunciations obtainable from the keypad in-

puts. We also incorporated a morph bigram for

increased linguistic support, where the possible

organizations of letters into morph units are

determined by the parsing grammar.

To evaluate this idea, we conducted experi-

ments on both the OGI name corpus (Cole et al.,

1992) and a set of enrollment data obtained from
our Mercury system (Seneff and Polifroni, 2000).

In both cases, about 16% of the names were not

present in our lexicon, an indication that the un-

known word problem would be unavoidable in a

personal name recognition task. The OGI set

contains isolated first and last names, whereas the

Mercury data are utterances containing both first

and last name spoken sequentially.
Results are summarized in Table 4. The system

performs very well on letter accuracy for the in-
UNCORR 1093

1094

1095
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1097

1098

1099

1100
1101

1102

1103

Fig. 9. A schematic for integrating keypad input with phonetic

recognition, to produce a hypothesized spelling and pronunci-

ation for the name ‘‘Cory.’’ Entered at the keypad is the se-

quence ‘‘2679,’’ producing a total of 144 possible four-letter

sequences. Using a subword language model, FST G1 sets out
probable names, and FST G2 maps the letters to phonemes
probabilistically, based on a grammar encoding letter-to-sound

rules.
TED
PROvocabulary portion of both sets, as might be ex-

pected. However, it should be pointed out that this

system has no explicit knowledge of the vocabu-

lary that it was trained on, such as a word lexicon.

It is encouraging that the system was able to ob-

tain a perfect spelling for nearly half of the un-

known words. If the search were restricted by a

word lexicon, clearly none of the OOV words

would have obtained a correct spelling. For fur-
ther information on this topic, please see Chung

and Seneff (2002).

An extension of this work resulted in a system

that can recognize a spoken spelling of a word

jointly with the corresponding pronounced word,

using an integrated solution that improves the

recognition of the spelled letters by incorporating

the constraints of a sound-to-letter model applied
to the pronounced word. We have integrated this

technology into a dialogue system that can learn

new words by prompting a user to speak and spell

the word in a single turn (Chung et al., in press).

We have thus far only incorporated this capability

into a user enrollment phase in the Orion task

delegation system (Seneff et al., 2000), but we ex-

pect it to be much more generally applicable. Ta-
ble 5 gives its letter and word error rates on a

corpus of telephone quality ‘‘speak-and-spell’’

data, divided into in-vocabulary and OOV subsets.
1104

1105

1106

1107
1108
3.5. Novel FST configurations

All of the research efforts described thus far

involving an FST formulation of ANGIENGIE �s parse
structure have taken the point of view that the
parse trees are decomposed into a simple column–
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Table 5

Letter error rates (LER) and word error rates (WER) for speak-

and-spell utterances for peoples� first and/or last names

Set No. of Utterances LER (%) WER (%)

In-Voc 416 8.4 27.4

OOV 219 12.4 46.1

Results are reported separately for words that were in the

100,000 word training lexicon (In-Voc) and words that were not

part of the training lexicon (OOV). See (Chung et al., in press)

for details.
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column transition matrix. This approach depends

upon direct observation in the training set of every

unique column pattern in every appropriate col-
umn context, and therefore can suffer from sparse

data problems. Recent research by Mou et al.

(2001) has been able to successfully encode the

entire parsing mechanism into an FST formulation,

thus retaining the generality that the rules achieve

directly in the FST representation. His strategy is

to use a recursive transition network formulation

to encode the context free rule component, which
can produce as outputs a detailed parse of the

input phone sequence. Subsequently, each layer

can be separately modelled so as to ignore all of

the elements that are irrelevant to that layer,

inserting just the portion of the probability model

that is provided for that layer. By jointly com-

posing the FSTs representing all of the layers, the

entire probability model can be inserted into the
resulting FST composition. While the resulting

FST is substantially larger than the FSTs obtained

from the column bigram approach, this formula-

tion is attractive because it provides a detailed

parse of each word, and because it permits us to

explore a variety of different probability formula-

tions to help identify which aspects of ANGIENGIE �s
probability model are most crucial.
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4. Summary and future work

This paper describes a framework for acquiring

subword linguistic knowledge by parsing letters

and/or spoken pronunciations into words, via a

context-free grammar, and acquiring a supporting

probability model from a corpus of observations
within the domain of interest. We have identified
TED
PROOF

several different ways in which such a framework

has utility in tasks related mainly to speech rec-

ognition. These include letter-to-sound and sound-

to-letter modeling, acquiring a probability model
for phonological realizations of words in fluent

speech, developing a duration model that takes

into account the hierarchy and also produces as a

side-effect a word-by-word speaking rate estimate,

acquiring a model for unknown words by gener-

alizing from the observed known words, and

obtaining a high quality phonetic graph in the first

stage of a two-stage large-vocabulary recognition
task. The ideas described here encompass research

that I have been conducting over the last several

years, collaboratively with both students and

researchers in the SLS group.

We are encouraged by the results of the pho-

nological modeling, which demonstrated signifi-

cant reductions in understanding error rates in our

Mercury flight reservation domain. Probability
modeling for phonology might have even higher

payoff in recognition involving human–human

dialogues, such as the Switchboard corpus (God-

frey et al., 1992), where the speaking style is likely

to be considerably more casual than that used in

spoken interactions with a computer dialogue

system.

We anticipate that the ANGIENGIE hierarchical
representations can play a role in subword mod-

eling for speech synthesis. For instance, a correct

durational model is more critical in speech syn-

thesis, and it is known that phoneme durations

depend significantly on the position of the pho-

neme in the syllable and of the syllable in the word.

Furthermore, ANGIENGIE �s hierarchical framework

might provide a convenient mechanism to aid in
unit selection for concatenative speech synthesis.

The main original motivation for characterizing

word substructure was to be able to model un-

known words as derivative from the substructure

of known words. The ability to support the auto-

matic acquisition of new words to both the rec-

ognition and understanding components of a

spoken conversational system will likely lead to a
breakthrough in dialogue system design. A sys-

tem�s ability to immediately augment its working
vocabulary with a list of names obtained from a

Web page being presented to the user will greatly
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enhance the set of services it can offer to its user

population. Furthermore, if the user can simply

speak and spell a word they would like to see ad-

ded, they are empowered to configure the system
in ways that will be of much greater use to them in

the future. Ongoing research is aimed at develop-

ing conversational systems with flexible vocabu-

laries, where proper nouns presented to the user in

Web pages are automatically added to the system�s
working vocabulary, and the user is empowered to

personalize the system to their own favored

information sources through natural spoken
interaction.
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