Распоряжение мпр рф от 05.06.2007 n 37-р "об утверждении методических рекомендаций по применению классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых"

при геологоразведочных работах", утвержденными Министерством геологии СССР 14 января 1985 г., и стандартом Российского геологического общества - СТО РосГео 09-001-98 "Твердые полезные ископаемые и горные породы. Технологическое опробование в процессе геологоразведочных работ", утвержденным и введенным в действие Постановлением Президиума Исполнительного комитета Всероссийского геологического общества (от 28 декабря 1998 г. N 17/6).
35. В процессе технологических исследований целесообразно изучить возможность предобогащения добытой руды или разделения ее на сорта на основе радиометрической (фотометрической, рентгенорадиометрической, нейтронно-активационной и др.) крупнопорционной сортировки горнорудной массы в транспортных емкостях, а для руд с высоким выходом кусковой фракции (-200 +20 мм) - возможность их радиометрической сепарации.
При положительных результатах исследований по предобогащению следует уточнить промышленные (технологические) типы руд, требующие селективной добычи, или подтвердить возможность валовой выемки рудной массы. Дальнейшие исследования способов глубокого обогащения руд проводятся с учетом возможностей и экономической эффективности включения в общую технологическую схему обогащения руд стадии предобогащения.
При изучении возможности радиометрической сортировки и сепарации руд следует руководствоваться "Требованиями к изучению радиометрической обогатимости минерального сырья при разведке месторождений металлических и неметаллических полезных ископаемых", утвержденными Председателем ГКЗ 23 ноября 1992 г.
36. Для выделения технологических типов и сортов руд проводится геолого-технологическое картирование, при котором сеть опробования выбирается в зависимости от числа и частоты перемежаемости природных разновидностей руд. При этом рекомендуется руководствоваться стандартом Российского геологического общества - СТО РосГео 09-002-98 "Твердые полезные ископаемые и горные породы. Геолого-технологическое картирование", утвержденным и введенным в действие Постановлением Президиума Исполнительного комитета Всероссийского геологического общества (от 28 декабря 1998 г. N 17/6).
Минералого-технологическими и малыми технологическими пробами, отобранными по определенной сети, должны быть охарактеризованы все природные разновидности руд, выявленные на месторождении. По результатам их испытаний проводится геолого-технологическая типизация руд месторождения с выделением промышленных (технологических) типов и сортов руд, изучается пространственная изменчивость вещественного состава, физико-механических и технологических свойств руд в пределах выделенных промышленных (технологических) типов и составляются геолого-технологические карты, планы и разрезы.
На лабораторных и укрупненно-лабораторных пробах должны быть изучены технологические свойства всех выделенных промышленных (технологических) типов руд в степени, необходимой для выбора оптимальной технологической схемы их переработки и определения основных технологических показателей обогащения и качества получаемой продукции. При этом важно определить оптимальную степень измельчения руд, которая обеспечит максимальное вскрытие ценных минералов при минимальном ошламовании и сбросе их в хвосты.
Полупромышленные технологические пробы служат для проверки технологических схем и уточнения показателей обогащения руд, полученных на лабораторных пробах.
Полупромышленные технологические испытания проводятся в соответствии с программой, разработанной организацией, выполняющей технологические исследования, совместно с недропользователем, и согласованной с проектной организацией. Отбор проб производится по специальному проекту.
Укрупненно-лабораторные и полупромышленные пробы должны быть представительными, т.е. отвечать по химическому и минеральному составу, структурно-текстурным особенностям, физическим и другим свойствам среднему составу руд данного промышленного (технологического) типа с учетом возможного разубоживания рудовмещающими породами.
37. При исследовании обогатимости золотосодержащих руд изучаются степень их окисленности, минеральный состав, структурные и текстурные особенности, а также физические и химические свойства минералов, устанавливается наличие попутных компонентов и вредных примесей с использованием приемов и методов технологической минералогии. Оценивается дробимость и измельчаемость руд и необходимая степень измельчения материала, проводится ситовый, дисперсионный и гравитационный анализы разных классов руды. Выбирается технологическая схема обогащения, устанавливается число стадий и стадиальная крупность измельчения. Определяются способы обогащения и доводки концентратов и промпродуктов, содержащих попутные компоненты. Должен быть решен вопрос о целесообразности использования отдельных типов руд в качестве кислых флюсов в металлургическом производстве.
Для попутных компонентов в соответствии с "Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов" необходимо выяснить формы их нахождения и баланс распределения в продуктах обогащения и передела концентратов, а также установить условия, возможность и экономическую целесообразность их извлечения.
Должна быть изучена возможность использования оборотных вод и отходов, получаемых при рекомендуемой технологической схеме переработки минерального сырья, даны рекомендации по очистке промстоков.
38. Технологические свойства руд месторождений золота отличаются большим разнообразием. Наибольшее значение имеют следующие признаки, определяющие технологию переработки золотосодержащего минерального сырья:
характеристика содержащегося в руде золота (крупность, форма нахождения, характер ассоциации с рудными и нерудными минералами, состояние поверхности частиц);
комплексность руд, т.е. содержание в руде наряду с золотом других полезных компонентов, имеющих промышленное значение;
степень окисленности руд, т.е. соотношение (в %) окисленных и сульфидных минералов;
наличие в руде компонентов, существенно осложняющих технологию переработки.
39. По крупности частиц золото классифицируется на крупное (более 0,07 мм), мелкое (от 0,001 до 0,07 мм) и тонкодисперсное (мельче 0,001 мм).
Крупное золото обычно легко высвобождается при измельчении и извлекается гравитационными методами, но плохо флотируется и медленно растворяется при цианировании. Мелкое золото (свободное и в сростках с сульфидами) хорошо флотируется, а также быстро растворяется при цианировании, но лишь частично извлекается гравитацией. Тонкодисперсное золото плохо вскрывается при измельчении руд и извлекается в гравитационные и флотационные концентраты совместно с минералами-носителями (сульфидами). Из сульфидов его извлекают пирометаллургией или цианированием после окислительного обжига. Если золото ассоциирует с гидроксидами железа и другими гипергенными минералам, оно может быть извлечено цианированием. Из кварца тонкодисперсное золото может извлекаться только при плавке.
40. Золотосодержащие руды в некоторых случаях кроме золота содержат другие полезные компоненты, которые могут представлять промышленный интерес. К таким компонентам относятся: серебро, медь, сурьма, свинец, цинк, вольфрам, уран, ртуть, висмут, таллий, селен, теллур, кремнезем, сера (в сульфидной форме), барит, флюорит и др. Соответственно выделяют золото-пиритные, золото-мышьяковые, золото-серебряные, золото-медные, золото-сурьмяные, золото-урановые, золото-баритовые, золото-полиметаллические и золото-кварцевые руды. Золото-кварцевые руды, содержащие больше 60% кремнезема, меньше 13% глинозема, 0,8% мышьяка и 0,3% сурьмы, могут использоваться в качестве флюса на металлургических заводах.
41. По степени окисления сульфидов руды подразделяют на первичные (сульфидные), частично окисленные (смешанные) и окисленные. К частично окисленным относятся руды, содержащие не более 30% окисленных минералов, к окисленным - свыше 30% окисленных минералов.
42. При оценке вредных примесей в рудах в первую очередь учитываются те из них, которые могут оказать отрицательное влияние на процесс цианирования - основной процесс извлечения золота. К вредным примесям относятся:
некоторые минералы меди (оксиды, карбонаты, вторичные сульфиды, сульфаты), сурьмы (антимонит), железа (пирротин), мышьяка (реальгар, аурипигмент), в присутствии которых резко снижается скорость растворения золота и увеличивается расход цианида;
отдельные разновидности углеродистого вещества, характеризующиеся повышенной сорбционной активностью;
шламообразующие минералы (слюдисто-глинистые), осложняющие процесс обезвоживания цианистой пульпы и отмывку растворенного золота. Наличие этих минералов вызывает значительные затруднения при транспортировке и бункеровании, а также при гравитационно-флотационном обогащении руд;
минералы мышьяка (арсенопирит, мышьяковые сульфосоли и др.), которые затрудняют пирометаллургическую переработку золотосодержащих концентратов и вызывают необходимость проведения специальных дорогостоящих мероприятий для охраны окружающей среды.
43. Основными технологическими схемами переработки минерального сырья золоторудных месторождений в большинстве случаев является комбинация процессов обогащения и пиро- и гидрометаллургии, включающих в себя рудосортировку, дробление, измельчение, обесшламливание, гравитационное и флотационное (коллективное или селективное) обогащение, амальгамацию, цианирование (по фильтрационной или сорбционной технологии) или пирометаллургическую переработку (обжиг, плавку) руд и концентратов. Заключительным процессом является аффинаж золота.
Новыми технологическими процессами являются: радиометрическая сортировка, пенная сепарация, кучное выщелачивание, биовыщелачивание, хлоридовозгонка и др., а также геотехнологические способы добычи золота (шахтные и скважинные системы выщелачивания).
44. Наиболее широкое применение в практике золотодобывающих компаний получили процессы, основанные на цианидном выщелачивании золота. При этом, наряду с использованием традиционных методов цианидного выщелачивания руд с последующим осаждением золота из раствора на цинк, в конце 1970-х - начале 1980-х гг. большое распространение получили новые более экономичные технологии, основанные на использовании процессов кучного выщелачивания (КВ). Процесс дешев и гибок, будучи удобным как для малообъемных (до 200 т в день), так и крупнообъемных (50000 т в день) производств, и позволяет вовлекать в эксплуатацию руды с низким (до 0,5 г/т) содержанием золота.
В зависимости от проницаемости руды возможны варианты ее переработки как с дроблением, так и без дробления. Золото и серебро должны находиться в свободном состоянии. "Упорные" руды и руды, содержащие компоненты, интенсивно связывающие цианид (например, окисленные сульфиды Zn, Cu, Fe As, Sb, а также органическое вещество), для кучного выщелачивания непригодны из-за неуправляемости химических процессов внутри кучи и требуют предварительной обработки (выщелачивание под давлением, бактериальное выщелачивание и обжиг в кипящем слое).
Возможность применения той или иной схемы кучного выщелачивания для конкретных объектов должна определяться на основе технологических испытаний и технико-экономического сопоставления различных вариантов. Определяющими технико-экономическими показателями эффективности кучного выщелачивания являются: извлечение золота; расход и стоимость реагентов; интенсивность (продолжительность) процесса.
Основным реагентом, применяемым при кучном выщелачивании в промышленном масштабе, является цианид натрия. Заменителями цианида могут служить кислые растворы тиомочевины, тиосульфатные растворы, гуминовые кислоты с добавлением окислителей, композиции, составленные на основе сульфатно-хлоритовых растворов с добавками хлористого натрия и др.
Важной характеристикой руды при кучном выщелачивании является ее приемлемая проницаемость в штабеле. Присутствие в руде шлама крупностью -50 мкм приводит к уплотнению материала внутри штабеля, вызывает образование каналов, создающих неблагоприятные условия для циркуляции раствора. При этом увеличивается продолжительность цикла выщелачивания и снижается извлечение металла. В связи с этим при технологических исследованиях глинистых золотосодержащих руд и руд с высоким выходом шлама при их дроблении необходимо установить оптимальные условия окомкования для получения агрегатов, обладающих необходимой прочностью и пористостью.
Технологические исследования по кучному выщелачиванию рекомендуется завершать опытно-промышленными испытаниями в реальных условиях месторождения, так как в лабораторных условиях невозможно учесть все факторы, влияющие на эффективность данной технологии (температура окружающей среды, высота и порядок формирования штабеля и др.). При опытно-промышленной отработке оптимальных режимов и параметров всех операций технологической схемы особое внимание должно быть уделено вопросам экологии и практической оценке надежности комплекса гидротехнических сооружений в условиях возможной фильтрации цианистых растворов при возникновении критических ситуаций.
В качестве примера в приложении 2 (не приводится) приведена обобщенная технологическая схема кучного выщелачивания, реализованная на ряде горнодобывающих предприятий США и апробируемая на опытно-промышленных площадках в России.
45. Более 70% мирового производства золота в настоящее время осуществляется на основе технологических процессов с использованием угольной абсорбции (процесс CIP - "уголь в пульпе" и его производные: CIL - "уголь в растворе"; CIC - "уголь в колоннах"). Методы CIP и CIL используются для прямого извлечения золота из взвесей, содержащих 50 - 60% твердых компонентов, в то время как процесс CIC - для извлечения золота из растворов (обычно при кучном выщелачивании). Процесс CIP ("уголь в пульпе"), как показывает практика, менее чувствителен, чем процессы, использующие осаждение золота цинком, к загрязнениям раствора серой, сурьмой, мышьяком и более устойчив ("всеяден") по отношению к характеру перерабатываемого сырья. Он повышает извлекаемость золота по сравнению с традиционными методами и экономически выгоднее их. В Северной Америке, Австралии, ЮАР действуют комбинаты, перерабатывающие на основе данной технологии различные виды сырья, начиная от низкокачественных руд до флотационных концентратов, флотационных хвостов и хвостов биологического окисления.
В странах СНГ при извлечении золота более широко и успешно практикуются ионообменные технологии (процессы "смола во взвеси" и "смола в выщелачивающем растворе"), основанные на использовании в сорбционном процессе специальных ионообменных смол, выпускаемых в виде твердых полистрованных шариков. Эти методы имеют ряд определенных преимуществ по отношению к методу CIP, и предполагается, что ионообменные смолы в перспективе будут играть в добыче золота все более значительную роль.
46. Для установления
Читайте также